Quantitative Reasoning

1015SCG

Lecture 2


Units of measurement

Units

  • In Australia, we use the
    International System of Units
    SI, from French Système International d'unités.
  • It is composed by seven fundamental units, known as SI base units.


Source: A Brief History of the Metric System by Carmen J. Giunta (2023).

Units

SI base units
Unit Physical quantity
Symbol Name
s Second Time
m Metre Length
kg Kilogram Mass
A Ampere Electric current
K Kelvin Thermodynamic temperature
mol Mole Amount of substance
cd Candela Luminous intensity

Source: A Brief History of the Metric System by Carmen J. Giunta (2023).


Units: Other physical quantities

Any other physical quantities can be written as some combination of these base units, and are sometimes are given their own name.

  • $\text{velocity}= \dfrac{\text{distance}}{\text{time}}$ $=\dfrac{\text{m}}{\text{s}}$
  • $\text{acceleration}= \dfrac{\text{velocity}}{\text{time}}$ $=\dfrac{\text{m}/\text{s}}{\text{s}}$ $=\dfrac{\text{m}}{\text{s}^2}$
  • $\text{force}= \text{mass}\times \text{acceleration}$ $=\text{kg}\times \dfrac{\text{m}}{\text{s}^2}$ $=\text{N}$ $\;\; $(Newton)
  • $\text{pressure}= \dfrac{\text{force}}{\text{area}}$ $= \dfrac{\text{N}}{\text{m}^2}$ $= \dfrac{\text{kg}\times \dfrac{\text{m}}{\text{s}^2}}{\text{m}^2}$ $= \dfrac{\text{kg}}{\text{m}\times\text{s}^2}$ $= \text{Pa}$ $\;\;$(Pascal)
  • $\text{energy}= \text{mass}\times \text{velocity}^2$ $= \text{kg} \times \dfrac{\text{m}^2}{\text{s}^2}$ $= \dfrac{\text{kg}\times \text{m}^2}{\text{s}^2}$ $= \text{J}$ $\;\;$(Joule)

Other sets of units

There are a number of non-SI units accepted for use alongside SI units, e.g.:

  • Angle in degrees, minutes and seconds (e.g. latitude and longitude).
  • Area in hectares.
  • Volumes in litres.
  • Time in minutes, hours, days, years.
  • Temperature in degrees Celsius.



Other sets of units

People in the U.S. uses customary units in daily life (related to the British Imperial system), e.g.:

  • Lengths in inches, feet, yards, miles and area in acres.
  • Mass in pounds.
  • Temperatures in degrees Fahrenheit (F)
  • Ounces (oz) for mass and fluid ounces (fl oz) for volume.




Metric and Imperial system

Image source: Statista: Metric or Imperial? (2019)


πŸ“ Practice: Examples

1. The length of the stick is measured to be 70 cm. But you want to communicate with your American friend. How many inches it is?
    Hint: 1 inch = 2.54 cm.

2. The pasture is a rectangle with dimensions of 500 m by 2 km. How many hectares it is?
    Hint: 1 ha = 100 m Γ— 100 m.

3. An Olympic swimming pool has dimensions 50 m Γ— 25 m Γ— 2 m. How many liters of water it can fit?
    Hint: 1 L = 10 cm Γ— 10 cm Γ— 10 cm.

4. The conversion from Fahrenheit to Celsius degrees is \(^{\circ}\text{C} = \dfrac{5}{9}\left(^{\circ}\text{F}-32\right).\) Find
      (a) \(\,0^\circ\text{F}\) in \(^\circ \text{C},\qquad\) (b) \(\, 100^\circ\text{F} \) in \(^\circ\text{C},\qquad\) (c) \(\, -40^\circ\text{C} \) in \(^\circ\text{F}\)


πŸ“ Practice: Examples

1. The length of the stick is measured to be 70 cm. But you want to communicate with your American friend. How many inches it is?
    Hint: 1 inch = 2.54 cm.

We need a conversion factor! Since we know that 1 inch = 2.54 cm, then

\( \dfrac{\text{1 inch}}{\text{2.54 cm}} = 1 \)   πŸ‘ˆ This is a conversion factor!

Thus we have

\(70 \text{ cm}\) \(=70 \text{ cm} \times 1\) \(=70 \text{ cm} \times \dfrac{\text{1 inch}}{\text{2.54 cm}} \) \(= \dfrac{70}{2.54} \text{ inch}\) \(= 27.56 \text{ inch}\)



πŸ“ Practice: Examples

2. The pasture is a rectangle with dimensions of 500 m by 2 km. How many hectares is it?
  Hint: 1 ha = 100 m Γ— 100 m.

Let's start by finding the area in square metres. First, we knot that \(2\,\text{km} = 2000\,\text{m}\)

Area = \(500 \text{ m} Γ— 2\,000 \text{ m} = 1\,000\,000 \text{ m}^2\)

Now use the conversion factor from $\text{m}^2$ β†’ $\text{ha}$:

\(1 \text{ ha} = 100 \text{ m} Γ— 100 \text{ m} = 10\,000 \text{ m}^2\)
\(\dfrac{1 \text{ ha}}{10\,000 \text{ m}^2} = 1\)  πŸ‘ˆ Conversion factor

\(1\,000\,000 \text{ m}^2 Γ— \dfrac{1 \text{ ha}}{10\,000 \text{ m}^2} = 100 \text{ ha}\)


πŸ“ Practice: Examples

3. An Olympic swimming pool has dimensions 50 m Γ— 25 m Γ— 2 m. How many litres of water can it fit?
  Hint: 1 L = 10 cm Γ— 10 cm Γ— 10 cm = 1 000 cmΒ³ = 0.001 mΒ³

First, find the volume in cubic metres.

Volume = \(50\text{ m} Γ— 25\text{ m} Γ— 2 \text{ m}= 2\,500 \text{ m}^3\)

Now use the conversion between cubic metres and litres:

\(1 \text{ m}^3 = 1\,000 \text{ L}\)
\(\dfrac{1\,000 \text{ L}}{1 \text{ m}^3} = 1\)  πŸ‘ˆ Conversion factor

\(2\,500 \text{ m}^3 Γ— \dfrac{1\,000 \text{ L}}{1 \text{ m}^3} = 2\,500\,000 \text{ L}\)


πŸ“ Practice: Examples

4. The conversion from Fahrenheit to Celsius degrees is \(^{\circ}\text{C} = \dfrac{5}{9}\left(^{\circ}\text{F}-32\right).\) Find:
    (a) \(0^\circ\text{F}\) in \(^{\circ}\text{C},\qquad\) (b) \(100^\circ\text{F}\) in \(^{\circ}\text{C},\qquad\) (c) \(-40^\circ\text{C}\) in \(^{\circ}\text{F}\)

πŸ’«(a) For \(0^\circ\text{F}\) in \(^{\circ}\text{C}\): \(\; ^{\circ}\text{C} = \dfrac{5}{9}(0 - 32) \) \(= \dfrac{5}{9}(-32)\) \(= -17.78^{\circ}\text{C}\)

πŸ’«(b) For \(100^{\circ}\text{F}\): \(\;^{\circ}\text{C} = \dfrac{5}{9}(100 - 32)\) \( = \dfrac{5}{9}(68)\) \(= 37.78^{\circ}\text{C}\)

πŸ’«(c) Now convert \(-40^{\circ}\text{C}\) to \(^{\circ}\text{F}\), use the inverse formula: \(^{\circ}\text{F} = \dfrac{9}{5}{}^{\circ}\text{C} + 32\)

Thus \(\; ^{\circ}\text{F} = \dfrac{9}{5}(-40) + 32\) \( = -72 + 32 \) \( = -40^{\circ}\text{F}\)

So, at \(-40^{\circ}\), Celsius and Fahrenheit are equal! ❄️


πŸ“ More practice πŸ˜ƒ

- Cheetahs can reach speeds up to 120 km/h.

  • How fast is it in m/s?
  • What about feet/quarter-hour? (1 foot $\approx$ 30 cm)

- I can paint a wall with the speed of 0.2 $\dfrac{\text{m}^2}{\text{min}}$.

  • How long will it take me to paint a 5 m $\times$ 3 m wall?

πŸ“ More practice πŸ˜ƒ

- Cheetahs can reach speeds up to 120 km/h.

  • How fast is it in m/s?
  • What about feet/quarter-hour? (1 foot β‰ˆ 30 cm)

πŸ‘‰ \(120 \text{ km/h} = 120{,}000 \text{ m}/3{,}600 \text{ s} = 33.3 \text{ m/s}\)

πŸ‘‰ \(120 \text{ km/h} = 120{,}000 \text{ m/h} = 400{,}000 \text{ ft/h}\) β‡’ \( 100{,}000 \text{ ft}/ \text{quarted-hour}\)

- I can paint a wall with the speed of 0.2 \(\dfrac{\text{m}^2}{\text{min}}\).

  • How long will it take me to paint a 5 m Γ— 3 m wall?

πŸ‘‰ Wall area = \(5\text{ m} \times 3\text{ m} = 15 \text{ m}^2\). Then Time = \(\dfrac{15 \text{ m}^2 }{0.2\frac{\text{m}^2}{\text{min}}} = 75 \text{ min} = 1\text{ h }15\text{ min}\)



Final remarks about the SI

SI base units (1960)
Unit Physical quantity
Symbol Name
s second Time
m Metre Length
kg Kilogram Mass
A Ampere Electric current
K Kelvin Thermodynamic temperature
mol Mole Amount of substance
cd Candela Luminous intensity

Source: A Brief History of the Metric System by Carmen J. Giunta (2023).



Final remarks about the SI

SI base units (2019)
Unit Defining constant
Symbol Name
s Second Frequency of Caesium-133
hyperfine transition (ΔνCs)
m Metre Speed of light in vacuum (c)
kg Kilogram Planck constant (h)
A Ampere Elementary charge (e)
K Kelvin Boltzmann constant (k)
mol Mole Avogadro constant (NA)
cd Candela Luminous efficacy of
540Γ—1012 Hz radiation (Kcd)

Source: A Brief History of the Metric System by Carmen J. Giunta (2023).



Scientific Notation, Orders of Magnitude

Image source: visualcapitalist.com

The decimal system


The decimal system

\(= \mathbf 7\times 10 ^3 \) \(+\,\mathbf 5\times 10 ^2 \) \(+\,\mathbf 9\times 10 ^1 \) \(+\,\mathbf 4\times 10 ^0 \)

\(\qquad+\,\mathbf 1\times 10 ^{-1} \) \(+\,\mathbf 6\times 10 ^{-2} \) \(+\,\mathbf 3\times 10 ^{-3} \)


Really small things

Radius of a helium atom:

  $0.000\,000\,000\,031 \text{ m}$

   $= 3.1 \times 10^{-11} \text{ m}$

Size of a helium nucleus (alpha particle):

  $0.000\,000\,000\,000\,000\,002 \text{ m}$

   $= 2 \times 10^{-18} \text{ m}$

Mass of a helium atom:

  $0.000\,000\,000\,000\,000\,000\,000\,000\,006\,64 \text{ kg}$

   $= 6.64 \times 10^{-27} \text{ kg}$


Really big things

Galactic orbit of our sun:

  $230\,000\,000 \text{ years}$

   $=2.3 \times 10^{8} \text{ years}$

The size (diameter) of our galaxy:

  $950\,000\,000\,000\,000\,000\,000 \text{ m}$

   $ = 9.5 \times 10^{20}\text{ m}$

Total mass of stars in the universe:

  $200\,000\,000\,000\,000\,000\,000$ ✨ $\times$

  $2\,000\,000 \,000\,000\,000\,000\,000\,000\,000\,000 \text{ kg}$

  $ =\left(2\times 10^{20} \times 2 \times 10^{30} \text{ kg}\right)$ $=4\times 10^{50} \text{ kg}$


Normilised Scientific Notation


$ \pm a \times 10 ^{n}$


  • $a$ β€” is called significand, with $\,1\leq a\lt 10$
  • $n$ β€” is the exponent (integer number)


Normilised Scientific Notation

$ \pm a \times 10 ^{n}$

  • $10^{-n}$ $=0.\overbrace{000\cdots000}^{n-1\ \text{ zeros}}1$
  • $10^{-3}$ $=0.001$
  • $10^{-2}$ $=0.01$
  • $10^{-1}$ $=0.1$

  • $10^{1}$ $=10$
  • $10^{2}$ $=100$
  • $10^{3}$ $=1000$
  • $10^{n}$ $=1\underbrace{000\cdots000}_{n\ \text{ zeros}}$


Writing numbers in normalised scientific notation

  1. Determine how many places you need to move the decimal point to get a significand at least 1 but less than $10.$
  2. Determine the exponent:
    • If you move the decimal point to the left, the exponent is positive.
    • If you move the decimal point to the right, the exponent is negative.
  3. Write the number in the form $a\times 10^{n}.$

Example 1: $142.14$

$142.14 = 1.4214 \times 10^{2}$

Example 2: $0.0312$

$0.0312 = 3.12 \times 10^{-2}$

βœ… Normalised form: one non-zero digit before the decimal point.


Writing numbers in normalised scientific notation

πŸ’» Calculator/Computer notation

$142.14 = 1.4214 \times 10^{2}$

$\quad \;\,=1.4214\text{E}2$ πŸ‘ˆ


$0.0312 = 3.12 \times 10^{-2}$

$\qquad \;\,\;\,=3.12\text{E}-2$ πŸ‘ˆ



πŸ“ Write in scientific notation πŸ˜ƒ

1. Height of Q1 Tower: $322.5\ \text{m}$


2. Diameter of the Moon: $3\,474\,800\ \text{m}$


3. Average mass of an E.coli cell (wet): $0.000\,000\,000\,001\ \text{g}$


4. Distance between carbon atoms in diamond: $0.000\,000\,000\,154\,4\ \text{m}$



πŸ“ Write in scientific notation πŸ˜ƒ

1. Height of Q1 Tower: $322.5\ \text{m}$

$$\textbf{Ans. } 3.225 \times 10^{2}\ \text{m}$$


2. Diameter of the Moon: $3\,474\,800\ \text{m}$

$$\textbf{Ans. } 3.4748 \times 10^{6}\ \text{m}$$


3. Average mass of an E.coli cell (wet): $0.000\,000\,000\,001\ \text{g}$

$$\textbf{Ans. } 1 \times 10^{-12}\ \text{g}$$


4. Distance between carbon atoms in diamond: $0.000\,000\,000\,154\,4\ \text{m}$

$$\textbf{Ans. } 1.544 \times 10^{-10}\ \text{m}$$


SI Metric Prefixes

Prefix Symbol Base 10 Decimal Name
peta P 1015 1 000 000 000 000 000 quadrillion
tera T 1012 1 000 000 000 000 trillion
giga G 109 1 000 000 000 billion
mega M 106 1 000 000 million
kilo k 103 1 000 thousand
hecto h 102 100 hundred
deca da 101 10 ten
base unit - 100 1 one
deci d 10-1 0.1 tenth
centi c 10-2 0.01 hundredth
milli m 10-3 0.001 thousandth
micro Β΅ 10-6 0.000 001 millionth
nano n 10-9 0.000 000 001 billionth
pico p 10-12 0.000 000 000 001 trillionth
femto f 10-15 0.000 000 000 000 001 quadrillionth
Powers of Ten


Example using SI Metric Prefixes

p n Β΅ m c d da h k M G
$10^{-12}$ $10^{-9}$ $10^{-6}$ $10^{-3}$ $10^{-2}$ $10^{-1}$ $10^{1}$ $10^{2}$ $10^{3}$ $10^{6}$ $10^{9}$

The distance between carbon atoms in diamond is

$\quad 0.000\,000\,000\,154\,4\ \text{m}$

First, convert to normalized scientific notation

$\quad 0.000\,000\,000\,154\,4\ \text{m} $ $= 1.544 \times 10^{-10}\ \text{m}\;$

                 Not in the SI Metric Prefixes‼️ πŸ‘†

But we can write as: $\, 0.1544 \times 10^{-9}\ \text{m} $ $= 0.1544 \, \text{nm} $

βœ… The carbon-carbon distance in diamond is $0.1544 $ nm

$\left(154.4\times 10^{-12}\right)$ πŸ‘‰ or also $154.4 $ pm



Example using SI Metric Prefixes

The distance between carbon atoms in diamond is

$\quad 0.000\,000\,000\,154\,4\ \text{m}$

First, convert to normalized scientific notation

$\quad 0.000\,000\,000\,154\,4\ \text{m} $ $= 1.544 \times 10^{-10}\ \text{m}\;$

If we want to use normalized scientific notation, we can write this in Γ…ngstrΓΆms (a unit of length).

We just need to use the conversion factor: 1 Γ… = $10^{-10}$ m

$\quad 1.544 \times 10^{-10}\ \text{m} $ $= 1.544\ \text{Γ…}$

βœ… The carbon-carbon distance in diamond is $1.544$ Γ…



πŸ“ Write using SI Metric PrefixesπŸ˜ƒ

p n Β΅ m cm d da h k M G
$10^{-12}$ $10^{-9}$ $10^{-6}$ $10^{-3}$ $10^{-2}$ $10^{-1}$ $10^{1}$ $10^{2}$ $10^{3}$ $10^{6}$ $10^{9}$

1. Age of a dinosaur fossil: $70\,000\,000\ \text{years}=$ _____ Myears


2. Height of Q1 Tower: $322.5\ \text{m}=$ _____ hm = _____ km


3. Diameter of the Moon: $3\,474\,800\ \text{m}=$ ________Mm


4. Average mass of an E.coli cell (wet): $0.000000000001\ \text{g}=$ _____ pg



πŸ“ Write using SI Metric Prefixes πŸ˜ƒ

p n Β΅ m cm d da h k M G
$10^{-12}$ $10^{-9}$ $10^{-6}$ $10^{-3}$ $10^{-2}$ $10^{-1}$ $10^{1}$ $10^{2}$ $10^{3}$ $10^{6}$ $10^{9}$

1. Age of a dinosaur fossil: $70\,000\,000\ \text{years}=$ _____ Myears

$\quad 7 \times 10 ^{7} \text{ years}$ $ = 70 \times 10^6 \text{ years}$ $ = 70 \text{ Myears}$


2. Height of Q1 Tower: $322.5\ \text{m}=$ $3. 225 \text{ hm}$ $= 0.3225 \text{ km}$

$\quad 3.225 \times 10^{2} \text{ m}$ $ = 0.3225 \times 10^{3} \text{ m}$


3. Diameter of the Moon: $3\,474\,800\ \text{m} = 3.4748\ \text{Mm}$


4. Average mass of an E.coli cell (wet): $0.000000000001\ \text{g} = 1\ \text{pg}$



Orders of magnitude β€” From trillion to trillionth

Common name SI prefix (symbol) Decimal Power of ten Order of magnitude
Trillion tera (T) 1 000 000 000 000 1012 +12
Billion giga (G) 1 000 000 000 109 +9
Million mega (M) 1 000 000 106 +6
Thousand kilo (k) 1 000 103 +3
One (none) 1 100 0
Tenth deci (d) 0.1 10βˆ’1 βˆ’1
Hundredth centi (c) 0.01 10βˆ’2 βˆ’2
Thousandth milli (m) 0.001 10βˆ’3 βˆ’3
Millionth micro (Β΅) 0.000 001 10βˆ’6 βˆ’6
Billionth nano (n) 0.000 000 001 10βˆ’9 βˆ’9
Trillionth pico (p) 0.000 000 000 001 10βˆ’12 βˆ’12

Orders of magnitude

When values vary across a broad scale, it is helpful to think in terms of the exponent $m$, which we call an order of magnitude β€” $\log_{10}(10^m)$

Image source: Chem 1 Virtual Textbook by Stephen Lower


Recap

Scientific notation or SI Prefixes to convey very small or very large quantities.

f p n Β΅ m cm
$10^{-15}$ $10^{-12}$ $10^{-9}$ $10^{-6}$ $10^{-3}$ $10^{-2}$

h k M G T P
$10^{2}$ $10^{3}$ $10^{6}$ $10^{9}$ $10^{12}$ $10^{15}$

πŸ‘‰ Scientific notation ⇔ SI prefixes




All together now!

πŸš€

🧩 Polya’s Problem-Solving Heuristics

  • Understand the problem β€” Identify what is known, what is unknown, and the conditions.
  • Devise a plan β€” Look for connections to similar problems, use patterns, draw diagrams, simplify, or work backwards.
  • Carry out the plan β€” Execute the strategy carefully, checking each step.
  • Look back β€” Verify results, reflect on the method, and consider generalizations.


Source: How To Solve It, by George Polya, 2nd ed., Princeton University Press, 1957.


πŸ“ Converting between units & relations using units

  1. What is the height of the Q1 Tower (322.5 m) in microns? $(1\text{ micron} = 1 \,\mu \text{m})$
  2. What is the age of the universe (1.38 Γ— 10¹⁰ years) in minutes?
  3. What is the speed of light (3 Γ— 10⁸ m/s) in AU/hour?

    AU is known as the Astronomical Unit, the average distance between Sun and Earth. 1 AU = $150$ billion meters (billion = $10^9$).

  4. If a single Tic Tac contains approximately 2 kilocalories (kcal), how long would it take to burn off the calories?

    (a) If sitting $(65 \text{ kcal}/\text{hour})$     (b) If dancing $(150 \text{ kcal}/\text{hour})$




🏒 Q1 Tower Height

What is the height of the Q1 Tower (322.5 m) in microns? $(1\text{ micron} = 1 \,\mu \text{m})$

$1 \text{ metre} = 1 \,000\, 000 \text{ microns }(\mu \text{m})$

$\dfrac{ 1 \,000\, 000 \,\mu\text{m}}{1 \text{ m}} = 1$  πŸ‘ˆ Conversion factor

$\qquad\qquad 322.5 \text{ m}$ $=322.5 \text{ m} \times \dfrac{ 1 \,000\, 000 \,\mu\text{m}}{1 \text{ m}}$

$\qquad\qquad \qquad \quad =3.225 \times 10^{2} \times 10^{6} \,\mu\text{m}$

$\qquad\qquad \qquad \quad =3.225 \times 10^{8} \,\mu\text{m}$




🌌 Age of the Universe

What is the age of the universe (1.38 Γ— 10¹⁰ years) in minutes?

1 year = 365 days = 365 Γ— (24 hours)            

= 365 Γ— 24 Γ— (60 mins) = 525 600 mins

1 year = 525 600 mins  πŸ‘ˆ Conversion

1.38 Γ— 10¹⁰ years = (1.38 Γ— 10¹⁰) Γ— 525 600 mins $\qquad \qquad \qquad \quad $

= 1.38 Γ— 10¹⁰ Γ— 5.256 Γ— 10⁡ mins = 7.25328 Γ— 10¹⁡ mins

πŸ€” What value do you get if you consider 1 year = 365.25 day?



⚑ Speed of Light in AU/hour

What is the speed of light (3 Γ— 10⁸ m/s) in AU/hour?

πŸ‘‰ $ $ 1 AU = 1.5 Γ— 10ΒΉΒΉ m = 150 billion meters

πŸ‘‰ 1 hour = 3 600 seconds$\qquad\qquad $

$3 \times 10^{8}\,\dfrac{\text{m}}{\text{s}}$ $= 3 \times 10^{8}\,\dfrac{\text{m}}{\text{s}} \times 3\,600\,\dfrac{\text{s}}{\text{hour}} $ $= 3 \times 10^{8} \times 3\,600\,\dfrac{\text{m}}{\text{hour}} $

$\qquad = 3 \times 10^{8} \times 3\,600\,\dfrac{\text{m}}{\text{hour}} \times \dfrac{1}{1.5\times 10 ^{11}}\, \dfrac{\text{AU}}{\text{m}} $

$\qquad = 3 \times 10^{8} \times 3\,600 \times \dfrac{1}{1.5\times 10 ^{11}}\, \dfrac{\text{AU}}{\text{hour}} $ $= \dfrac{(3\times 3.6) \times 10^{11}}{1.5\times 10 ^{11}}\, \dfrac{\text{AU}}{\text{hour}} $

$\qquad= \dfrac{3\times 3.6 }{1.5}\, \dfrac{\text{AU}}{\text{hour}} $ $= 7.2\, \dfrac{\text{AU}}{\text{hour}} $


πŸ”₯ Burning a Tic Tac

If one Tic Tac β‰ˆ 2 kilocalories (kcal), how long to burn it off?

(a) Sitting: $65\,\dfrac{\text{kcal}}{\text{hour}}$ = Rate of burning calories

πŸ‘‰ $\;\text{Rate} = \dfrac{\text{Energy}}{\text{Time}}$ $\;\Ra\; \text{Time} =\dfrac{\text{Energy}}{\text{Rate}}$

Thus $\,\text{Time} = \dfrac{2 \,\text{kcal}}{65\,\frac{\text{kcal}}{\text{hour}}}$ $=\dfrac{2}{65}\,\text{hours}$ $\approx 0.0308\,\text{hours}$ $=1.85\,\text{minutes}$

(b) Dancing: $150\,\dfrac{\text{kcal}}{\text{hour}}$ β†’ $\text{Time} = 0.0133\,\text{hours} \approx 0.8 \,\text{mins}$



βš›οΈ Mole & Molar mass

Mole (unit)

The mole (mol) is a unit of measurement, the base unit in the SI for amount of substance, an SI base quantity proportional to the number of elementary entities of a substance.

$1\, \text{mol} = 6.022\,140\,76 \times 10^{23}\, \text{entities}$

Molar mass

The molar mass (M) of a chemical substance (element or compound) is defined as the ratio between the mass (m) and the amount of substance (n, measured in moles) of any sample of the substance:

$\text{M} = \dfrac{\text{mass of the substance}}{\text{number of moles of the substance}}$


βš—οΈ Description of solutions

Concentration of the solution (g/L)

$\text{Concentration}=\dfrac{\text{mass of the solute}} {\text{volume of the solution}}$


Molar concentration - morality (mol/L)

$\text{Morality}=\dfrac{\text{numbers of moles of solute}} {\text{volume of the solution}}$



βš—οΈ Other concentrations

\(\%\text{w/w}\) - weight per weight concentration - how many \(\text{g}\) of the solute there are in \(100 \, \text{g}\) of the solution

$\% \dfrac{\text{w}}{\text{w}}=\dfrac{\text{mass of the solute in g}} {100\,\text{g of the solution}}\times 100 \%$

\(\%\text{w/v}\) - weight per volume concentration - how many \(\text{g}\) of the solute there are in \(100 \, \text{ml}\) of the solution

$\% \dfrac{\text{w}}{\text{v}}=\dfrac{\text{mass of the solute in g}} {100\,\text{ml of the solution}}\times 100 \%$

\(\%\text{v/v}\) - volume per volume concentration - how many ml of the solute are there in \(100 \, \text{ml}\) of the solution

$\% \dfrac{\text{v}}{\text{v}}=\dfrac{\text{mass of the solute in ml}} {100\,\text{ml of the solution}}\times 100 \%$



πŸ“ Extra practice πŸ˜€

1. What is the concentration and molar concentration of the 0.444 mol of cobalt chloride $\text{CoCl}_2$ in 0.654 L of solution (129.839 g/mol)?

2. A patient has a serum (39.0983 g/mol) level of 3 mmol/L.
  (a) How many mmol are present in a 50 ml sample?
  (b) How many mg are present in a 50 ml sample?

3. A glucose solution contains 10% w/v of glucose in water. How much glucose is in 1L of the solution?

4. What weight of hydrochloric acid is needed to produce 50 g of 30% w/w acid?



πŸ“ Extra practice πŸ˜€

1. What is the concentration and molar concentration of the 0.444 mol of cobalt chloride $\text{CoCl}_2$ in 0.654 L of solution (129.839 g/mol)?

  πŸ’«Ans. Mass concentration = 88.15 g/L;   Molar concentration = 0.6790 mol/L.

2. A patient has a serum (39.0983 g/mol) level of 3 mmol/L.
  (a) How many mmol are present in a 50 ml sample?
  (b) How many mg are present in a 50 ml sample?

  πŸ’«Ans. (a) 0.150 mmol. (b) 5.865 mg.

3. A glucose solution contains 10% w/v of glucose in water. How much glucose is in 1L of the solution?

  πŸ’«Ans. 100 g glucose per 1 L.

4. What weight of hydrochloric acid is needed to produce 50 g of 30% w/w acid?

  πŸ’«Ans. 15 g HCl (to make 50 g of 30% w/w).



πŸ“ Extra practice - Solutions

1. What is the concentration and molar concentration of the 0.444 mol of cobalt chloride $\text{CoCl}_2$ in 0.654 L of solution (129.839 g/mol)?

  1. Molar concentration (M): \(C = \dfrac{\text{moles}}{\text{volume (L)}} = \dfrac{0.444\ \text{mol}}{0.654\ \text{L}}\).
  2. Calculate: \(C = \dfrac{0.444\ \text{mol}}{0.654\ \text{L}}= 0.678899\ \text{mol / L}\). Rounded to four decimals: $0.6790 \,\text{mol / L}$
  3. Mass of solute: \(m = n \times M = 0.444\ \text{mol} \times 129.839\ \text{g / mol} = 57.6485\ \text{g}.\)
  4. Mass concentration $(\text{g/L})$: \(\rho = \dfrac{m}{V} = \dfrac{57.6485\ \text{g}}{0.654\ \text{L}} = 88.1476\ \text{g / L}.\) Rounded: \(88.15 \,\text{g / L}\)

Thus, Mass concentration = \(88.15 \,\text{g / L}\); Molar concentration = $0.6790 \,\text{mol / L}$.


πŸ“ Extra practice - Solutions

2. A patient has a serum (39.0983 g/mol) level of 3 mmol/L.
  (a) How many mmol are present in a 50 ml sample?
  (b) How many mg are present in a 50 ml sample?

  1. Convert volume to litres: \(50\ \text{mL} = 0.050\ \text{L}.\)
  2. (a) Amount in mmol: \(n_{\text{mmol}} = C(\text{mmol / L}) \times V(\text{L}) = 3\ \text{mmol / L}\times 0.050\ \text{L} = 0.150\ \text{mmol}.\)
  3. (b) Mass in mg: 1 mmol corresponds to \(M\,/ \,1000\) g = \(39.0983\ \text{mg}\).
    So \(m(\text{mg}) = 0.150\ \text{mmol} \times 39.0983\ \text{mg / mmol} = 5.864745\ \text{mg}.\)
    Rounded: 5.865 mg.

Thus, (a) 0.150 mmol; (b) 5.865 mg.



πŸ“ Extra practice - Solutions

3. A glucose solution contains 10% w/v of glucose in water. How much glucose is in 1L of the solution?

  1. Definition: 10% w/v means 10 g of solute per 100 mL of solution.
  2. Scale to 1000 mL (1 L): \( \dfrac{10\ \text{g}}{100\ \text{mL}} \times 1000\ \text{mL} = 100\ \text{g}.\)

Thus, the answer is 100 g glucose per 1 L of solution.





πŸ“ Extra practice - Solutions

4. What weight of hydrochloric acid is needed to produce 50 g of 30% w/w acid?

  1. 30% w/w means mass fraction of solute = 0.30 (i.e. 30 g HCl per 100 g solution).
  2. Mass of pure HCl required: \(m_{\text{HCl}} = 0.30 \times 50\ \text{g} = 15\ \text{g}.\)
  3. To prepare the 50 g solution you would combine 15 g HCl with 35 g solvent (usually water) to give a total mass of 50 g.

Hence, the answer is 15 g HCl (to make 50 g of 30% w/w solution).



Why getting it right is important...

The Gimli Glider was an Air Canada Boeing 767 that ran out of fuel mid-flight in 1983 due to a metric conversion errorβ€”the fuel was loaded in pounds instead of kilograms. The pilots glided the plane safely to an emergency landing at a former airbase in Gimli, Manitoba, with no fatalities.


⚠️ Other Famous Conversion Errors

Mars Climate Orbiter (1999): Lost because of a mismatch between imperial and metric units (pound-seconds vs newton-seconds). Mars climate orbiter
Space Mountain, Tokyo Disneyland (2003): Roller coaster axle failed after parts were made using inch instead of millimeter specifications. Unit Mixups

That's all for today!

See you in Week 3!