1015SCG
Lecture 2
|
|
Source: A Brief History of the Metric System by Carmen J. Giunta (2023).
|
|
||||||||||||||||||||||||||
Source: A Brief History of the Metric System by Carmen J. Giunta (2023).
Any other physical quantities can be written as some combination of these base units, and are sometimes are given their own name.
There are a number of non-SI units accepted for use alongside SI units, e.g.:
People in the U.S. uses customary units in daily life (related to the British Imperial system), e.g.:
Image source: Statista: Metric or Imperial? (2019)
1. The length of the stick is measured to be 70 cm. But you want to
communicate with your American friend. How many inches it is?
Hint: 1 inch = 2.54 cm.
2. The pasture is a rectangle with dimensions of 500 m by 2 km. How
many hectares it is?
Hint: 1 ha = 100 m Γ 100 m.
3. An Olympic swimming pool has dimensions 50 m Γ 25 m Γ 2 m. How
many liters of water it can fit?
Hint: 1 L = 10 cm Γ 10 cm Γ 10 cm.
4. The conversion from Fahrenheit to Celsius degrees is
\(^{\circ}\text{C} = \dfrac{5}{9}\left(^{\circ}\text{F}-32\right).\)
Find
(a) \(\,0^\circ\text{F}\) in \(^\circ \text{C},\qquad\)
(b) \(\, 100^\circ\text{F} \) in \(^\circ\text{C},\qquad\)
(c) \(\, -40^\circ\text{C} \) in \(^\circ\text{F}\)
1. The length of the stick is measured to be 70 cm. But you want to
communicate with your American friend. How many inches it is?
Hint: 1 inch = 2.54 cm.
We need a conversion factor! Since we know that 1 inch = 2.54 cm, then
\( \dfrac{\text{1 inch}}{\text{2.54 cm}} = 1 \) π This is a conversion factor!
Thus we have
\(70 \text{ cm}\) \(=70 \text{ cm} \times 1\) \(=70 \text{ cm} \times \dfrac{\text{1 inch}}{\text{2.54 cm}} \) \(= \dfrac{70}{2.54} \text{ inch}\) \(= 27.56 \text{ inch}\)
2. The pasture is a rectangle with dimensions of 500 m by 2 km.
How many hectares is it?
Hint: 1 ha = 100 m Γ 100 m.
Let's start by finding the area in square metres.
First, we knot that \(2\,\text{km} = 2000\,\text{m}\)
Area = \(500 \text{ m} Γ 2\,000 \text{ m} = 1\,000\,000 \text{ m}^2\)
Now use the conversion factor from $\text{m}^2$ β $\text{ha}$:
\(1 \text{ ha} = 100 \text{ m} Γ 100 \text{ m} = 10\,000 \text{ m}^2\)
\(\dfrac{1 \text{ ha}}{10\,000 \text{ m}^2} = 1\) π Conversion factor
\(1\,000\,000 \text{ m}^2 Γ \dfrac{1 \text{ ha}}{10\,000 \text{ m}^2} = 100 \text{ ha}\)
3. An Olympic swimming pool has dimensions 50 m Γ 25 m Γ 2 m.
How many litres of water can it fit?
Hint: 1 L = 10 cm Γ 10 cm Γ 10 cm
= 1 000 cmΒ³
= 0.001 mΒ³
First, find the volume in cubic metres.
Volume = \(50\text{ m} Γ 25\text{ m} Γ 2 \text{ m}= 2\,500 \text{ m}^3\)
Now use the conversion between cubic metres and litres:
\(1 \text{ m}^3 = 1\,000 \text{ L}\)
\(\dfrac{1\,000 \text{ L}}{1 \text{ m}^3} = 1\) π Conversion factor
\(2\,500 \text{ m}^3 Γ \dfrac{1\,000 \text{ L}}{1 \text{ m}^3} = 2\,500\,000 \text{ L}\)
4. The conversion from Fahrenheit to Celsius degrees is
\(^{\circ}\text{C} = \dfrac{5}{9}\left(^{\circ}\text{F}-32\right).\)
Find:
(a) \(0^\circ\text{F}\) in
\(^{\circ}\text{C},\qquad\)
(b) \(100^\circ\text{F}\) in \(^{\circ}\text{C},\qquad\)
(c) \(-40^\circ\text{C}\) in \(^{\circ}\text{F}\)
π«(a) For \(0^\circ\text{F}\) in \(^{\circ}\text{C}\): \(\; ^{\circ}\text{C} = \dfrac{5}{9}(0 - 32) \) \(= \dfrac{5}{9}(-32)\) \(= -17.78^{\circ}\text{C}\)
π«(b) For \(100^{\circ}\text{F}\): \(\;^{\circ}\text{C} = \dfrac{5}{9}(100 - 32)\) \( = \dfrac{5}{9}(68)\) \(= 37.78^{\circ}\text{C}\)
π«(c) Now convert \(-40^{\circ}\text{C}\) to \(^{\circ}\text{F}\), use the inverse formula: \(^{\circ}\text{F} = \dfrac{9}{5}{}^{\circ}\text{C} + 32\)
Thus \(\; ^{\circ}\text{F} = \dfrac{9}{5}(-40) + 32\) \( = -72 + 32 \) \( = -40^{\circ}\text{F}\)
So, at \(-40^{\circ}\), Celsius and Fahrenheit are equal! βοΈ
- Cheetahs can reach speeds up to 120 km/h.
- I can paint a wall with the speed of 0.2 $\dfrac{\text{m}^2}{\text{min}}$.
- Cheetahs can reach speeds up to 120 km/h.
π \(120 \text{ km/h} = 120{,}000 \text{ m}/3{,}600 \text{ s} = 33.3 \text{ m/s}\)
π \(120 \text{ km/h} = 120{,}000 \text{ m/h} = 400{,}000 \text{ ft/h}\) β \( 100{,}000 \text{ ft}/ \text{quarted-hour}\)
- I can paint a wall with the speed of 0.2 \(\dfrac{\text{m}^2}{\text{min}}\).
π Wall area = \(5\text{ m} \times 3\text{ m} = 15 \text{ m}^2\). Then Time = \(\dfrac{15 \text{ m}^2 }{0.2\frac{\text{m}^2}{\text{min}}} = 75 \text{ min} = 1\text{ h }15\text{ min}\)
|
|
||||||||||||||||||||||||||
Source: A Brief History of the Metric System by Carmen J. Giunta (2023).
|
|
||||||||||||||||||||||||||
Source: A Brief History of the Metric System by Carmen J. Giunta (2023).
Image source: visualcapitalist.com
\(= \mathbf 7\times 10 ^3 \) \(+\,\mathbf 5\times 10 ^2 \) \(+\,\mathbf 9\times 10 ^1 \) \(+\,\mathbf 4\times 10 ^0 \)
\(\qquad+\,\mathbf 1\times 10 ^{-1} \) \(+\,\mathbf 6\times 10 ^{-2} \) \(+\,\mathbf 3\times 10 ^{-3} \)
|
|
Radius of a helium atom: $0.000\,000\,000\,031 \text{ m}$ $= 3.1 \times 10^{-11} \text{ m}$ Size of a helium nucleus (alpha particle): $0.000\,000\,000\,000\,000\,002 \text{ m}$ $= 2 \times 10^{-18} \text{ m}$ Mass of a helium atom: $0.000\,000\,000\,000\,000\,000\,000\,000\,006\,64 \text{ kg}$ $= 6.64 \times 10^{-27} \text{ kg}$ |
|
|
Galactic orbit of our sun: $230\,000\,000 \text{ years}$ $=2.3 \times 10^{8} \text{ years}$ The size (diameter) of our galaxy: $950\,000\,000\,000\,000\,000\,000 \text{ m}$ $ = 9.5 \times 10^{20}\text{ m}$ Total mass of stars in the universe: $200\,000\,000\,000\,000\,000\,000$ β¨ $\times$ $2\,000\,000 \,000\,000\,000\,000\,000\,000\,000\,000 \text{ kg}$ $ =\left(2\times 10^{20} \times 2 \times 10^{30} \text{ kg}\right)$ $=4\times 10^{50} \text{ kg}$ |
$ \pm a \times 10 ^{n}$
$ \pm a \times 10 ^{n}$
|
|
|
Example 1: $142.14$ $142.14 = 1.4214 \times 10^{2}$ |
Example 2: $0.0312$ $0.0312 = 3.12 \times 10^{-2}$ |
β Normalised form: one non-zero digit before the decimal point.
π» Calculator/Computer notation
$142.14 = 1.4214 \times 10^{2}$
$\quad \;\,=1.4214\text{E}2$ π
$0.0312 = 3.12 \times 10^{-2}$
$\qquad \;\,\;\,=3.12\text{E}-2$ π
1. Height of Q1 Tower: $322.5\ \text{m}$
2. Diameter of the Moon: $3\,474\,800\ \text{m}$
3. Average mass of an E.coli cell (wet): $0.000\,000\,000\,001\ \text{g}$
4. Distance between carbon atoms in diamond: $0.000\,000\,000\,154\,4\ \text{m}$
1. Height of Q1 Tower: $322.5\ \text{m}$
$$\textbf{Ans. } 3.225 \times 10^{2}\ \text{m}$$
2. Diameter of the Moon: $3\,474\,800\ \text{m}$
$$\textbf{Ans. } 3.4748 \times 10^{6}\ \text{m}$$
3. Average mass of an E.coli cell (wet): $0.000\,000\,000\,001\ \text{g}$
$$\textbf{Ans. } 1 \times 10^{-12}\ \text{g}$$
4. Distance between carbon atoms in diamond: $0.000\,000\,000\,154\,4\ \text{m}$
$$\textbf{Ans. } 1.544 \times 10^{-10}\ \text{m}$$
SI Metric PrefixesOpen: Full SI Metric Prefixes |
|
| p | n | Β΅ | m | c | d | da | h | k | M | G |
| $10^{-12}$ | $10^{-9}$ | $10^{-6}$ | $10^{-3}$ | $10^{-2}$ | $10^{-1}$ | $10^{1}$ | $10^{2}$ | $10^{3}$ | $10^{6}$ | $10^{9}$ |
|
The distance between carbon atoms in diamond is $\quad 0.000\,000\,000\,154\,4\ \text{m}$ First, convert to normalized scientific notation $\quad 0.000\,000\,000\,154\,4\ \text{m} $ $= 1.544 \times 10^{-10}\ \text{m}\;$ Not in the SI Metric PrefixesβΌοΈ π But we can write as: $\, 0.1544 \times 10^{-9}\ \text{m} $ $= 0.1544 \, \text{nm} $ β The carbon-carbon distance in diamond is $0.1544 $ nm $\left(154.4\times 10^{-12}\right)$ π or also $154.4 $ pm |
|
|
The distance between carbon atoms in diamond is $\quad 0.000\,000\,000\,154\,4\ \text{m}$ First, convert to normalized scientific notation $\quad 0.000\,000\,000\,154\,4\ \text{m} $ $= 1.544 \times 10^{-10}\ \text{m}\;$ If we want to use normalized scientific notation, we can write this in Γ ngstrΓΆms (a unit of length). We just need to use the conversion factor: 1 Γ = $10^{-10}$ m $\quad 1.544 \times 10^{-10}\ \text{m} $ $= 1.544\ \text{Γ }$ β The carbon-carbon distance in diamond is $1.544$ Γ |
|
| p | n | Β΅ | m | cm | d | da | h | k | M | G |
| $10^{-12}$ | $10^{-9}$ | $10^{-6}$ | $10^{-3}$ | $10^{-2}$ | $10^{-1}$ | $10^{1}$ | $10^{2}$ | $10^{3}$ | $10^{6}$ | $10^{9}$ |
1. Age of a dinosaur fossil: $70\,000\,000\ \text{years}=$ _____ Myears
2. Height of Q1 Tower: $322.5\ \text{m}=$ _____ hm = _____ km
3. Diameter of the Moon: $3\,474\,800\ \text{m}=$ ________Mm
4. Average mass of an E.coli cell (wet): $0.000000000001\ \text{g}=$ _____ pg
| p | n | Β΅ | m | cm | d | da | h | k | M | G |
| $10^{-12}$ | $10^{-9}$ | $10^{-6}$ | $10^{-3}$ | $10^{-2}$ | $10^{-1}$ | $10^{1}$ | $10^{2}$ | $10^{3}$ | $10^{6}$ | $10^{9}$ |
1. Age of a dinosaur fossil: $70\,000\,000\ \text{years}=$ _____ Myears
$\quad 7 \times 10 ^{7} \text{ years}$ $ = 70 \times 10^6 \text{ years}$ $ = 70 \text{ Myears}$
2. Height of Q1 Tower: $322.5\ \text{m}=$ $3. 225 \text{ hm}$ $= 0.3225 \text{ km}$
$\quad 3.225 \times 10^{2} \text{ m}$ $ = 0.3225 \times 10^{3} \text{ m}$
3. Diameter of the Moon: $3\,474\,800\ \text{m} = 3.4748\ \text{Mm}$
4. Average mass of an E.coli cell (wet): $0.000000000001\ \text{g} = 1\ \text{pg}$
| Common name | SI prefix (symbol) | Decimal | Power of ten | Order of magnitude |
|---|---|---|---|---|
| Trillion | tera (T) | 1 000 000 000 000 | 1012 | +12 |
| Billion | giga (G) | 1 000 000 000 | 109 | +9 |
| Million | mega (M) | 1 000 000 | 106 | +6 |
| Thousand | kilo (k) | 1 000 | 103 | +3 |
| One | (none) | 1 | 100 | 0 |
| Tenth | deci (d) | 0.1 | 10β1 | β1 |
| Hundredth | centi (c) | 0.01 | 10β2 | β2 |
| Thousandth | milli (m) | 0.001 | 10β3 | β3 |
| Millionth | micro (Β΅) | 0.000 001 | 10β6 | β6 |
| Billionth | nano (n) | 0.000 000 001 | 10β9 | β9 |
| Trillionth | pico (p) | 0.000 000 000 001 | 10β12 | β12 |
When values vary across a broad scale, it is helpful to think in terms of the exponent $m$, which we call an order of magnitude β $\log_{10}(10^m)$
Image source: Chem 1 Virtual Textbook by Stephen Lower
|
|
Scientific notation or SI Prefixes to convey very small or very large quantities.
π Scientific notation β SI prefixes |
Source: How To Solve It, by George Polya, 2nd ed., Princeton University Press, 1957.
AU is known as the Astronomical Unit, the average distance between Sun and Earth. 1 AU = $150$ billion meters (billion = $10^9$).
(a) If sitting $(65 \text{ kcal}/\text{hour})$ (b) If dancing $(150 \text{ kcal}/\text{hour})$
What is the height of the Q1 Tower (322.5 m) in microns? $(1\text{ micron} = 1 \,\mu \text{m})$
$1 \text{ metre} = 1 \,000\, 000 \text{ microns }(\mu \text{m})$
$\dfrac{ 1 \,000\, 000 \,\mu\text{m}}{1 \text{ m}} = 1$ π Conversion factor
$\qquad\qquad 322.5 \text{ m}$ $=322.5 \text{ m} \times \dfrac{ 1 \,000\, 000 \,\mu\text{m}}{1 \text{ m}}$
$\qquad\qquad \qquad \quad =3.225 \times 10^{2} \times 10^{6} \,\mu\text{m}$
$\qquad\qquad \qquad \quad =3.225 \times 10^{8} \,\mu\text{m}$
What is the age of the universe (1.38 Γ 10ΒΉβ° years) in minutes?
1 year = 365 days = 365 Γ (24 hours)
= 365 Γ 24 Γ (60 mins) = 525 600 mins
1 year = 525 600 mins π Conversion
1.38 Γ 10ΒΉβ° years = (1.38 Γ 10ΒΉβ°) Γ 525 600 mins $\qquad \qquad \qquad \quad $
= 1.38 Γ 10ΒΉβ° Γ 5.256 Γ 10β΅ mins = 7.25328 Γ 10ΒΉβ΅ mins
π€ What value do you get if you consider 1 year = 365.25 day?
What is the speed of light (3 Γ 10βΈ m/s) in AU/hour?
π $ $ 1 AU = 1.5 Γ 10ΒΉΒΉ m = 150 billion meters
π 1 hour = 3 600 seconds$\qquad\qquad $
$3 \times 10^{8}\,\dfrac{\text{m}}{\text{s}}$ $= 3 \times 10^{8}\,\dfrac{\text{m}}{\text{s}} \times 3\,600\,\dfrac{\text{s}}{\text{hour}} $ $= 3 \times 10^{8} \times 3\,600\,\dfrac{\text{m}}{\text{hour}} $
$\qquad = 3 \times 10^{8} \times 3\,600\,\dfrac{\text{m}}{\text{hour}} \times \dfrac{1}{1.5\times 10 ^{11}}\, \dfrac{\text{AU}}{\text{m}} $
$\qquad = 3 \times 10^{8} \times 3\,600 \times \dfrac{1}{1.5\times 10 ^{11}}\, \dfrac{\text{AU}}{\text{hour}} $ $= \dfrac{(3\times 3.6) \times 10^{11}}{1.5\times 10 ^{11}}\, \dfrac{\text{AU}}{\text{hour}} $
$\qquad= \dfrac{3\times 3.6 }{1.5}\, \dfrac{\text{AU}}{\text{hour}} $ $= 7.2\, \dfrac{\text{AU}}{\text{hour}} $
If one Tic Tac β 2 kilocalories (kcal), how long to burn it off?
(a) Sitting: $65\,\dfrac{\text{kcal}}{\text{hour}}$ = Rate of burning calories
π $\;\text{Rate} = \dfrac{\text{Energy}}{\text{Time}}$ $\;\Ra\; \text{Time} =\dfrac{\text{Energy}}{\text{Rate}}$
Thus $\,\text{Time} = \dfrac{2 \,\text{kcal}}{65\,\frac{\text{kcal}}{\text{hour}}}$ $=\dfrac{2}{65}\,\text{hours}$ $\approx 0.0308\,\text{hours}$ $=1.85\,\text{minutes}$
(b) Dancing: $150\,\dfrac{\text{kcal}}{\text{hour}}$ β $\text{Time} = 0.0133\,\text{hours} \approx 0.8 \,\text{mins}$
Mole (unit)
The mole (mol) is a unit of measurement, the base unit in the SI for amount of substance, an SI base quantity proportional to the number of elementary entities of a substance.
$1\, \text{mol} = 6.022\,140\,76 \times 10^{23}\, \text{entities}$
Molar mass
The molar mass (M) of a chemical substance (element or compound) is defined as the ratio between the mass (m) and the amount of substance (n, measured in moles) of any sample of the substance:
$\text{M} = \dfrac{\text{mass of the substance}}{\text{number of moles of the substance}}$
|
Concentration of the solution (g/L) $\text{Concentration}=\dfrac{\text{mass of the solute}} {\text{volume of the solution}}$ Molar concentration - morality (mol/L) $\text{Morality}=\dfrac{\text{numbers of moles of solute}} {\text{volume of the solution}}$ |
|
\(\%\text{w/w}\) - weight per weight concentration - how many \(\text{g}\) of the solute there are in \(100 \, \text{g}\) of the solution
$\% \dfrac{\text{w}}{\text{w}}=\dfrac{\text{mass of the solute in g}} {100\,\text{g of the solution}}\times 100 \%$
\(\%\text{w/v}\) - weight per volume concentration - how many \(\text{g}\) of the solute there are in \(100 \, \text{ml}\) of the solution
$\% \dfrac{\text{w}}{\text{v}}=\dfrac{\text{mass of the solute in g}} {100\,\text{ml of the solution}}\times 100 \%$
\(\%\text{v/v}\) - volume per volume concentration - how many ml of the solute are there in \(100 \, \text{ml}\) of the solution
$\% \dfrac{\text{v}}{\text{v}}=\dfrac{\text{mass of the solute in ml}} {100\,\text{ml of the solution}}\times 100 \%$
1. What is the concentration and molar concentration of the 0.444 mol of cobalt chloride $\text{CoCl}_2$ in 0.654 L of solution (129.839 g/mol)?
2.
A patient has a serum (39.0983 g/mol) level of 3 mmol/L.
(a) How many mmol are present in a 50 ml sample?
(b) How many mg are present in a 50 ml sample?
3. A glucose solution contains 10% w/v of glucose in water. How much glucose is in 1L of the solution?
4. What weight of hydrochloric acid is needed to produce 50 g of 30% w/w acid?
1. What is the concentration and molar concentration of the 0.444 mol of cobalt chloride $\text{CoCl}_2$ in 0.654 L of solution (129.839 g/mol)?
π«Ans. Mass concentration = 88.15 g/L; Molar concentration = 0.6790 mol/L.
2.
A patient has a serum (39.0983 g/mol) level of 3 mmol/L.
(a) How many mmol are present in a 50 ml sample?
(b) How many mg are present in a 50 ml sample?
π«Ans. (a) 0.150 mmol. (b) 5.865 mg.
3. A glucose solution contains 10% w/v of glucose in water. How much glucose is in 1L of the solution?
π«Ans. 100 g glucose per 1 L.
4. What weight of hydrochloric acid is needed to produce 50 g of 30% w/w acid?
π«Ans. 15 g HCl (to make 50 g of 30% w/w).
1. What is the concentration and molar concentration of the 0.444 mol of cobalt chloride $\text{CoCl}_2$ in 0.654 L of solution (129.839 g/mol)?
Thus, Mass concentration = \(88.15 \,\text{g / L}\); Molar concentration = $0.6790 \,\text{mol / L}$.
2.
A patient has a serum (39.0983 g/mol) level of 3 mmol/L.
(a) How many mmol are present in a 50 ml sample?
(b) How many mg are present in a 50 ml sample?
Thus, (a) 0.150 mmol; (b) 5.865 mg.
3. A glucose solution contains 10% w/v of glucose in water. How much glucose is in 1L of the solution?
Thus, the answer is 100 g glucose per 1 L of solution.
4. What weight of hydrochloric acid is needed to produce 50 g of 30% w/w acid?
Hence, the answer is 15 g HCl (to make 50 g of 30% w/w solution).
The Gimli Glider was an Air Canada Boeing 767 that ran out of fuel mid-flight in 1983 due to a metric conversion errorβthe fuel was loaded in pounds instead of kilograms. The pilots glided the plane safely to an emergency landing at a former airbase in Gimli, Manitoba, with no fatalities.
|
Mars Climate Orbiter (1999): Lost because of a mismatch between
imperial and metric units (pound-seconds vs newton-seconds).
Mars
climate orbiter
|
Space Mountain, Tokyo Disneyland (2003): Roller coaster axle failed after
parts were made using inch instead of millimeter specifications.
Unit Mixups
|
See you in Week 3!