Foundation Mathematics

1017SCG

Week 3


Topics for Week 3


  • Radians
  • Special Triangles
  • Unit Circle




Radians


Radians



Radians

\(\theta = \dfrac{\text{Arc length}}{\text{Radius}}\)

\(\theta = \dfrac{ r}{r }\) \(=1\,\text{radian}\)




Radians

\(\theta = \dfrac{\text{Arc length}}{\text{Radius}}\)

\(\theta = \dfrac{2 r}{r }\)

\(\;\;\; =2\,\text{radians}\)



Radians

\(\theta = \dfrac{\text{Arc length}}{\text{Radius}}\)

\(\theta = \dfrac{3 r}{r }\)

\(\;\;\; =3\,\text{radians}\)



Radians

\(\theta = \dfrac{\text{Arc length}}{\text{Radius}}\)

\(\theta = \dfrac{2\pi r}{r }\)

\(\;\;\; =2\pi\,\text{radians}\)



Radians

By Lucas Vieira

Radians

Two different measurements of an angle:

Degrees

Radians


How do we convert degrees to radians and vice versa?


🤔


How do we convert degrees to radians and vice versa?


\(\large 360^{\circ} = 2\pi \,\text{radians}\)

\(\large \dfrac{360^{\circ}}{360} = \dfrac{2\pi}{360} \,\text{radians}\)

\(\large 1^{\circ} =\dfrac{\pi}{180} \,\text{radians}\)


Degrees to Radians





How do we convert degrees to radians and vice versa?


\(\large 2\pi \,\text{radians} = 360^{\circ} \)

\(\large \dfrac{2\pi }{2\pi}\,\text{radians} = \dfrac{360^{\circ} }{2\pi} \)

\(\large 1 \,\text{radian} =\dfrac{180^{\circ}}{\pi} \)

\(\large 1 \,\text{radian} =\dfrac{180}{\pi}\, \text{degrees} \)


Radians to Degrees





How do we convert degrees to radians and vice versa?

Degrees to Radians:

\[ \begin{eqnarray*} \large 1^{\circ} =\dfrac{\pi}{180} \,\text{radians} \end{eqnarray*} \]

Radians to Degrees:

\[ \begin{eqnarray*} \large 1\, \text{radian} = \dfrac{180}{\pi}\,\text{degrees} \end{eqnarray*} \]


How do we convert degrees to radians and vice versa?

Example 1 (Degree to radian): \( \;\large 30^{\circ} \;\)

\( 30^{\circ} \times \dfrac{\pi}{180} \) \( = \dfrac{30\pi}{180} \)

\(\qquad \quad\;\; =\dfrac{3\pi}{18}\)

\( \qquad \qquad\qquad =\dfrac{\pi}{6} \,\text{radians}\)

Therefore \( \,30^{\circ} = \dfrac{\pi}{6} \,\text{radians}\)


How do we convert degrees to radians and vice versa?

Example 2 (Degree to radian):\( \; \large 45^{\circ} \)

\( 45^{\circ} \times \dfrac{\pi}{180} \) \( = \dfrac{45\pi}{180} \;\;\)

\( \qquad\qquad \quad\; =\dfrac{\pi}{4} \,\text{radians}\)

Therefore \( \,45^{\circ} = \dfrac{\pi}{4} \,\text{radians}\)



How do we convert degrees to radians and vice versa?

Example 3 (Degree to radian): \( \; \large 60^{\circ} \)

\(60^{\circ} \times \dfrac{\pi}{180} \) \( = \dfrac{60\pi}{180}\)

\( \qquad\qquad \qquad =\dfrac{\pi}{3} \,\text{radians}\)

Therefore \( \,60^{\circ} = \dfrac{\pi}{3} \,\text{radians}\)



How do we convert degrees to radians and vice versa?

Example 4 (Radian to degree): \(\; \large \dfrac{2\pi}{3} \)

\( \dfrac{2\pi}{3} \times \dfrac{180}{\pi} \) \( = \dfrac{360}{3} \;\;\)

\(\qquad \qquad =120^{\circ}\;\)

Therefore \( \,\dfrac{2\pi}{3} \,\text{radians} = 120^{\circ} \)



How do we convert degrees to radians and vice versa?

Example 5 (Radian to degree):\(\; \large \dfrac{3\pi}{4} \)

\( \dfrac{3\pi}{4} \times \dfrac{180}{\pi} \) \( = \dfrac{540}{4}\)

\(\qquad \qquad\; =135^{\circ}\;\)

Therefore \( \,\dfrac{3\pi}{4} \,\text{radians} = 135^{\circ} \)



Common notation

Degrees Radians
  • \(30\;\text{degrees}\)
  • \(30\;\text{deg}\)
  • \(30^{\circ}\)
  • \(\dfrac{\pi}{6}\;\text{radians}\)
  • \(\dfrac{\pi}{6}\;\text{rad}\)
  • \(\dfrac{\pi}{6}\)



Special Triangles

Special Triangles

Special Triangles

Special Triangles

\(\sin \left(30^{\circ }\right)\) \(=\dfrac{1}{2}\)

\(\cos \left(30^{\circ }\right)\) \(=\dfrac{\sqrt{3}}{2}\)

\(\tan \left(30^{\circ }\right)\) \(=\dfrac{1}{\sqrt{3}}\)

\(\sin \left(\dfrac{\pi}{3}\right)\) \(=\dfrac{\sqrt{3}}{2},\;\;\) \(\cos \left(\dfrac{\pi}{3}\right)\) \(= \dfrac{1}{2},\;\;\) \(\tan \left(\dfrac{\pi}{3}\right)\) \(= \dfrac{\sqrt{3}}{1}\)


Special Triangles

\(\sin \left(\dfrac{\pi}{4}\right)\) \(=\dfrac{1}{\sqrt{2}}\) \(=\dfrac{\sqrt{2}}{2}\)

\(\cos \left(\dfrac{\pi}{4}\right)\) \(=\dfrac{1}{\sqrt{2}}\) \(=\dfrac{\sqrt{2}}{2}\)

\(\tan \left(\dfrac{\pi}{4}\right)\) \(=\dfrac{1}{1} \) \(=1 \)







Special Triangles

We can compute some exact values of $\sin$/$\cos$/$\tan$


Special Triangles

But what if the angle is something other than
30, 45, or 60 degrees?

🤔


The Unit Circle



The Unit Circle

\(P = \left(\cos \theta, \sin \theta\right)\)

\(\;\;\; = \left(\cos 0^{\circ}, \sin 0^{\circ}\right)\)

\(\;\;\; = \left(1, 0\right)\)


The Unit Circle

\(P = \left(\cos \theta, \sin \theta\right)\)

\(\;\;\; = \left(\cos 90^{\circ}, \sin 90^{\circ}\right)\)

\(\;\;\; = \left(0, 1\right)\)


The Unit Circle

\(P = \left(\cos \theta, \sin \theta\right)\)

\(\;\;\; = \left(\cos 180^{\circ}, \sin 180^{\circ}\right)\)

\(\;\;\; = \left(-1, 0\right)\)


The Unit Circle

\(P = \left(\cos \theta, \sin \theta\right)\)

\(\;\;\; = \left(\cos 270^{\circ}, \sin 270^{\circ}\right)\)

\(\;\;\; = \left(0, -1\right)\)


The Unit Circle: sin and cos at $30^\circ$


The Unit Circle: sin and cos at $45^\circ$


The Unit Circle: sin and cos at $60^\circ$


The Unit Circle

The Unit Circle

The Unit Circle

The Unit Circle

What is next?

  • Watch the fifth video on Canvas site:
    "Like and Unlike Terms".
  • Prepare for Progress Test 1.
  • Watch the week 4 video content before your scheduled week 4 workshop.



Credits