Foundation Mathematics

1017SCG

Week 9


Topics for Week 9


  • Graphing trigonometric functions (sin and cos)
  • Introduction to limits
  • Evaluating limits analytically
  • Continuity of functions




Graphing trigonometric functions (sin)

Graphing trigonometric functions (sin)
θ 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°
$\sin \theta$ $1/2$ $\sqrt{3}/2$ $1$ $\sqrt{3}/2$ $1/2$ $0$ $-1/2$ $-\sqrt{3}/2$ $-1$ $-\sqrt{3}/2$ $-1/2$ $0$

Graphing trigonometric functions (sin)

Graphing trigonometric functions (sin)

Graphing trigonometric functions (cos)

Graphing trigonometric functions (cos)
θ 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°
$\cos \theta$

Graphing trigonometric functions (cos)

Graphing trigonometric functions (cos)

The unit circle and it's relationship with sin and cos

Graphing trigonometric functions (sin & cos in degrees)
Graphing trigonometric functions (sin & cos in radians)
The unit circle and Trigonometric functions

Graphing trigonometric functions: Amplitude
Graphing trigonometric functions: Amplitude
Graphing trigonometric functions: Frequency
Graphing trigonometric functions: Frequency
Graphing trigonometric functions: Vertical shift
Graphing trigonometric functions: Vertical shift
Graphing trigonometric functions: Horizontal shift
Graphing trigonometric functions: Horizontal shift
Graphing trigonometric functions: Reflection
Graphing trigonometric functions: Reflection
Graphing trigonometric functions: cos
Graphing trigonometric functions: cos - Amplitude
Graphing trigonometric functions: cos - Frequency
Graphing trigonometric functions: cos - Vertical shift
Graphing trigonometric functions: cos - Horizontal shift

Putting all together

$ y = A \sin \big[B\left(x+C\right)\big] + D \;$ or $\; y = A \cos \big[B\left(x+C\right)\big] + D $

  • Amplitude is $A$
  • Period is $\dfrac{360^\circ}{B}$ or $\dfrac{2\pi}{B}$ (horizontal compression)
  • Horizontal shift is $C$ (phase shift)
  • Vertical shift is $D$



Example 1: $\;y = 2 \cos(x) -3$

Example 2: $\;y = 3 \sin(x) +1$

Example 3: Find the main features of the plot

Example 4: Find the main features of the plot

Explore more in Desmos

Why do we study trigonometric functions?

🤔







Heart Rate & O2 Saturation graphs





Computer Graphics: Procedural Landscape Generation

\[ f(\mathbf{x}) = \sum_{i=0}^{N-1} A_i \cdot \big[\cos\left(2\pi \, \mathbf{k}_i \cdot \mathbf{x} + \phi_i\right) + \sin\left(2\pi \, \mathbf{k}_i \cdot \mathbf{x} + \theta_i\right)\big] \]


MRI (magnetic resonance imaging) scans


Sound Processing


Limits

Consider the function \(f(x)=\dfrac{1}{x}\,\) near $\,x=0.$



Limits

Consider the function \(f(x)=\dfrac{\sin (x)}{x}\,\) near $\,x=0.$



Limits: Area under a curve

\(\ds \int_I f(x)dx = \lim \sum_{i=1}^{n} f(x_i^*)(x_i-x_{i-1}) \)


Limits: Tangent line to curve



Estimating a limit numerically

Calculate \[\ds\lim_{x\rightarrow 1}\frac{x^2-1}{x-1}\]




$x$ $\left(x^2 - 1\right) /\left(x - 1\right)$
0 1
0.5 1.5
0.9 1.9
0.95 1.95
0.99 1.99
0.999 1.999
1 ???
1.001 2.001
1.01 2.01
1.05 2.05
1.1 2.1
1.5 2.5

Estimating a limit numerically

$x$ $f(x)$
0 1
0.5 1.5
0.9 1.9
0.95 1.95
0.99 1.99
0.999 1.999
1 ???
1.001 2.001
1.01 2.01
1.05 2.05
1.1 2.1
1.5 2.5

Finding the limit analytically 🤓

Our goal is to prove that:

\[\ds\lim_{x\rightarrow 1}\frac{x^2-1}{x-1}=2\]

😁

Examples

1. $\,\ds \lim_{x\ra 1}(4x+3)$




2. $\,\ds \lim_{x\ra 1}5x^2$






Example 3

$\ds \lim_{x\ra -2}\frac{x^2+7x+10}{x+2}$










Example 4

$\ds \lim_{x\ra 10}\frac{x^2-100}{x-10}$










Continuity of functions (Intuitive notion)



Continuity of functions (Intuitive notion)


Definition of Continuity

For the function $f(x)$ to be continuous at $x=a,$ it must satisfy the following three criteria:

  1. $f(a)$ must exist.
  2. $\ds \lim_{x\ra a} f(x)$ must exist,
  3. $\ds \lim_{x\ra a} f(x)= f(a).$



Credits