1017SCG
Week 9
θ | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | 360° |
---|---|---|---|---|---|---|---|---|---|---|---|---|
$\sin \theta$ | $1/2$ | $\sqrt{3}/2$ | $1$ | $\sqrt{3}/2$ | $1/2$ | $0$ | $-1/2$ | $-\sqrt{3}/2$ | $-1$ | $-\sqrt{3}/2$ | $-1/2$ | $0$ |
θ | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | 360° |
---|---|---|---|---|---|---|---|---|---|---|---|---|
$\cos \theta$ |
$ y = A \sin \big[B\left(x+C\right)\big] + D \;$ or $\; y = A \cos \big[B\left(x+C\right)\big] + D $
\[ f(\mathbf{x}) = \sum_{i=0}^{N-1} A_i \cdot \big[\cos\left(2\pi \, \mathbf{k}_i \cdot \mathbf{x} + \phi_i\right) + \sin\left(2\pi \, \mathbf{k}_i \cdot \mathbf{x} + \theta_i\right)\big] \]
Consider the function \(f(x)=\dfrac{1}{x}\,\) near $\,x=0.$
Consider the function \(f(x)=\dfrac{\sin (x)}{x}\,\) near $\,x=0.$
\(\ds \int_I f(x)dx = \lim \sum_{i=1}^{n} f(x_i^*)(x_i-x_{i-1}) \)
Calculate \[\ds\lim_{x\rightarrow 1}\frac{x^2-1}{x-1}\] |
|
|
|
Our goal is to prove that: \[\ds\lim_{x\rightarrow 1}\frac{x^2-1}{x-1}=2\] ![]() |
|
1. $\,\ds \lim_{x\ra 1}(4x+3)$
2. $\,\ds \lim_{x\ra 1}5x^2$
$\ds \lim_{x\ra -2}\frac{x^2+7x+10}{x+2}$
$\ds \lim_{x\ra 10}\frac{x^2-100}{x-10}$
For the function $f(x)$ to be continuous at $x=a,$ it must satisfy the following three criteria: