Foundation Mathematics 1017SCG Week 11 Summary Sheet

Table of Integrals

In the table below, k, n and C are constants. (C is the constant of integration).

f(x)	$\int f(x) \ dx$
k	kx + C
x^n	$\frac{x^{n+1}}{n+1} + C$
$\sin(x)$	$-\cos(x) + C$
$\cos(x)$	$\sin(x) + C$
e^x	$e^x + C$
$\frac{1}{x}$	$\ln x + C$

Indefinite Integrals

Example

$$\int 5x^2 + 4\sin(x) + 7e^x dx = \frac{5x^3}{3} - 4\cos(x) + 7e^x + C$$

Definite Integrals

Given that $\int f(x) dx = F(x)$, a definite integral can be calculated using

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

where a is the lower limit of integration and b is the upper limit of integration.

Example

$$\int_{1}^{4} 6x^{2} dx = \left[\frac{6x^{3}}{3}\right]_{1}^{4}$$

$$= \left[2x^{3}\right]_{1}^{4}$$

$$= \left(2 \times 4^{3}\right) - \left(2 \times 1^{3}\right)$$

$$= 128 - 2$$

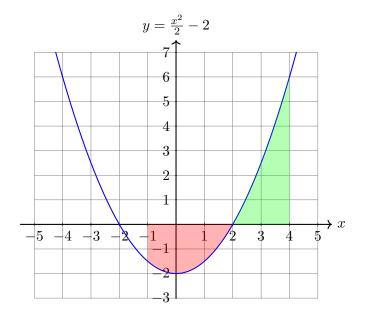
$$= 126$$

Note that it is not necessary to include the constant of integration when evaluating definite integrals.

Area under Curve

A definite integral can be used to calculate the area bounded by the curve and x-axis.

- Area above the *x*-axis is considered positive (green shaded region)
- Area below the x-axis is considered negative (red shaded region)



Example Find the area bounded by the curve $y = \frac{x^2}{2} - 2$ and the x-axis between x = 2 and x = 4.

$$\int_{2}^{4} \frac{x^{2}}{2} - 2 \, dx = \left[\frac{x^{3}}{6} - 2x \right]_{2}^{4}$$

$$= \left(\frac{4^{3}}{6} - 2 \times 4 \right) - \left(\frac{2^{3}}{6} - 2 \times 2 \right)$$

$$= \left(\frac{8}{3} \right) - \left(-\frac{8}{3} \right)$$

$$= \frac{16}{3}$$

The area of the green shaded region is $\frac{16}{3}$ units². **Example** Find the area bounded by the curve $y = \frac{x^2}{2} - 2$ and the x-axis between x = -1 and x = 2.

$$\int_{-1}^{2} \frac{x^{2}}{2} - 2 \, dx = \left[\frac{x^{3}}{6} - 2x \right]_{-1}^{2}$$

$$= \left(\frac{2^{3}}{6} - 2 \times 2 \right) - \left(\frac{(-1)^{3}}{6} - 2 \times (-1) \right)$$

$$= \left(-\frac{8}{3} \right) - \left(\frac{11}{6} \right)$$

$$= -\frac{9}{2}$$

The area of the red shaded region is $\frac{9}{2}$ units².