Workshop 1
| Function | Inverse | Domain | Range |
|---|---|---|---|
| $f(x)=e^x$ | $f^{-1}(x)=\ln x$ | $(-\infty,\infty)$ | $(0,\infty)$ |
| $g(x)=\ln x$ | $g^{-1}(x)=e^x$ | $(0,\infty)$ | $(-\infty,\infty)$ |
These functions are inverses to each other since:
\( e^{\ln x}=x \quad (x>0), \qquad \ln(e^x)=x \)
General form: \[ y = A\sin\big[B(x + C)\big] + D \]
| Parameter | Effect |
|---|---|
| $A$ | Amplitude $=|A|$ |
| $B$ | Period $=\dfrac{2\pi}{|B|}$ |
| $C$ | Horizontal shift |
| $D$ | Vertical shift |
| Function | Inverse | Domain | Range |
|---|---|---|---|
| $f(x)=e^x$ | $f^{-1}(x)=\ln x$ | $(-\infty,\infty)$ | $(0,\infty)$ |
| $g(x)=\ln x$ | $g^{-1}(x)=e^x$ | $(0,\infty)$ | $(-\infty,\infty)$ |
\(y = A\sin\big[B(x + C)\big] + D,\,\) $|A|=\,$Amplitude, $\frac{2\pi}{B}=\,$Period, $C=\,$Horizontal shift, $D=\,$Vertical shift
|
|