Calculus I
&
Engineering Mathematics 2

Workshop 5


First Derivative Test

Behaviour of \(f'(x)\) Conclusion
Changes from positive to negative Local maximum
Changes from negative to positive Local minimum
No sign change Stationary point of inflection



Second Derivative Test

Condition at \(x = a\) Conclusion
\( f'(a)=0 \) and \( f''(a) \lt 0 \) Local maximum
\( f'(a)=0 \) and \( f''(a) \gt 0 \) Local minimum
\( f'(a)=0 \) and \( f''(a) = 0 \) Test inconclusive




Small change formula

From the definition of derivative $\ds \frac{dy}{dx} = \lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}.$

If $\,\Delta y \,$ and $\,\Delta x\,$ are small, then

$\ds \frac{\Delta y}{ \Delta x} \approx \frac{dy}{dx}\,$ and so $\,\ds \Delta y \approx \frac{dy}{ dx}\Delta x$




Taylor series

Let $a\in \mathbb R$ and $f(x)$ be and infinitely differentiable function on an interval $I$ containing $a$. Then the one-dimensional Taylor series of $f$ around $a$ is given by

\(\ds f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+\cdots\)

which can be written in the most compact form:

\(\ds f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n.\)




Taylor series

\(\ds f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n.\)

For example, the best linear approximation for $f(x)$ is

$f(x)\approx f(a)+f'(a)(x-a).$

This linear approximation fits $f(x)$ with a line through $x=a$ that matches the slope of $f$ at $a$.

For a better approximation we can add other terms in the expansion. For instance, the best quadratic approximation is

$\ds f(x)\approx f(a)+f'(a)(x-a)+\frac12 f''(a)(x-a)^2.$


Taylor series

Change the function in the input box. Drag slider to increase the number of terms in the Taylor series.


L'Hôpital's rule

If two functions $f(x)$ and $g(x)$ are differentiable (with $g'(x)\neq 0$) and defined near (not necessarily at) some point $c,$ and

$\ds \lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0\,$ or $\,\pm \infty,$

then $\;\ds \lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c}\frac{f'(x)}{g'(x)}$

provided the latter limit exists.




Second Derivative Test

Condition at \(x = a\) Conclusion
\( f'(a)=0 \) and \( f''(a) \lt 0 \) Local maximum
\( f'(a)=0 \) and \( f''(a) \gt 0 \) Local minimum
\( f'(a)=0 \) and \( f''(a) = 0 \) Test inconclusive

Small change formula: For $\Delta y $ and $\Delta x$ are small, $\ds \frac{\Delta y}{ \Delta x} \approx \frac{dy}{dx}\,$ implies $\,\ds \Delta y \approx \frac{dy}{ dx}\Delta x$


Taylor series: \(\;\ds f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+\cdots\)


L'Hôpital's Rule: If $f(x)$ and $g(x)$ are differentiable and defined near (not necessarily at) some point $c,$ and $\ds \lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0\,$ or $\,\pm \infty,\,$ then

$\,\ds \lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c}\frac{f'(x)}{g'(x)}\quad$ $(g'(x)\neq 0).$



Credits