Calculus I
&
Engineering Mathematics 2

Workshop 7


Integration by Parts

Recall the product rule for differentiation: $\ds \frac{d}{dx}(uv)=u\,dv+v\,du.$

Re-arranging we get

Integrating both sides gives

$\ds u\,dv = \frac{d}{dx}(uv)- v\,du\;$ $\ds\Ra \int u\,dv = uv - \int v\,du.$

This method is useful when the integrand is a product of functions.




Trigonometric Substitution

This technique is used for integrals involving

$\sqrt{a^2-x^2},\ \sqrt{a^2+x^2},\ \sqrt{x^2-a^2}$.

These expressions resemble standard trigonometric identities.

We substitute $x$ using a trigonometric function to eliminate the square root.
For example, by setting $\, x=a\sin\theta,\,$ we can rewrite the integral

$\ds \int \frac{dx}{\sqrt{a^2-x^2}}$ $\ds = \int \frac{a\cos\theta\,d\theta}{a\cos\theta}$ $\ds = \int d\theta.$

👉 $\;\sqrt{a^2-x^2} = \sqrt{a^2- a^2\sin^2\theta}$ $ = \sqrt{a^2\left(1- \sin^2\theta\right)}$ $ =\sqrt{a^2\cos^2\theta }$ $ =a\cos\theta .$

Also, since $\,x = a\sin\theta\,$ then $\,dx = a \cos\theta \,d\theta.$


Partial Fractions

This method applies to rational functions: $\ds \frac{P(x)}{Q(x)},\,$ where $\,\deg P \lt \deg Q$.

The idea is to decompose the integrand into simpler fractions.

$\ds \int $ $\ds \frac{1}{(x-1)(x+2)}$ $\ds dx$ $\ds =$ $\ds \int $ $\ds \frac{A}{x-1}$ $\ds dx$ $\ds +$ $\ds \int$ $\ds \frac{B}{x+2}$ $\ds dx\qquad\qquad \qquad $

$\qquad \qquad\quad \ds=\frac{1}{3}\int \frac{1}{x-1}\, dx - \frac{1}{3}\int \frac{1}{x+2}\,dx$

Each term can then be integrated directly.

\(A(x+2)+ B(x-1)\) \(=Ax+2A+ Bx-B\) \(=(A+B)x+2A-B\)

\( \left\{ \begin{array}{c} A+B = 0\\ 2A - B = 1 \end{array} \right. \) \( \Ra A = \dfrac{1}{3}, B = -\dfrac{1}{3} \)


Summary of Integration Techniques

Integration by parts formula: $\ds \int u\,dv = uv - \int v\,du.$


Method Recognise Typical example
Integration by parts $\ds \int u\,dv$ $\ds \int x e^x\,dx,\;$
$u = x,$ $dv= e^x\,dx$
Trigonometric substitution $\ds \sqrt{a^2-x^2},\ \sqrt{a^2+x^2}$ $\ds \int \frac{dx}{\sqrt{a^2-x^2}}$
$x=\sin t,$ $dx = \cos t\, dt$
Partial fractions $\ds \frac{P(x)}{Q(x)}$ $\ds \int \frac{1}{(x-1)(x+2)}\,dx$


Credits