Workshop 9
Source: Falling |
\[ m \frac{dV}{dt} =m\,g - k V \] More info: Newton's second law of motion: $F=ma$ |
|
|
$\ds m \frac{d^2x}{dt^2} = -k\, x(t) $ More info: Free, Undamped Vibrations |
|
|
$\ds x''(t) + \frac{\beta}{m}x'(t) + \frac{k}{m}x(t) =0$ More info: Free, Damped Vibrations |
|
|
\(\ds \frac{d^2\theta(t) }{dt^2} = -\mu\frac{d\theta (t)}{dt}-\frac{g}{L} \sin \left(\theta(t)\right) \) More info: Pendulum (mechanics) |
\(\ds \frac{d^2\theta_i }{dt^2} =-\frac{g}{L_i}\sin \theta_i \)
\[ \begin{eqnarray} \theta_1'' & = & \frac{-g\left(2m_1+m_2\right)\sin \theta_1 - m_2 g \sin\left(\theta_1 - 2 \theta_2\right) - 2\sin\left(\theta_1 - \theta_2\right)\,m_2 \big[\theta_2'^2 L_2 + \theta_1'^2L_1 \cos\left(\theta_1 - \theta_2\right)\big]}{L_1\big[2m_1+m_3-m_2\cos \left(2\theta_1 - 2 \theta_2\right) \big]}\\ \theta_2'' & = & \frac{ 2\sin\left(\theta_1 - \theta_2\right) \big[ \theta_1'^2L_1(m_1+m_2) + g (m_1+m_2) \cos \theta_1 + \theta_2'^2L_2m_2\cos\left(\theta_1 - \theta_2\right) \big]}{L_2\big[2m_1+m_3-m_2\cos \left(2\theta_1 - 2 \theta_2\right) \big]}\\ \end{eqnarray} \]
Source: www.myphysicslab.com
First and second order ODEs are amazing! 😎
However, they are really freaking hard to solve!
|
$x^2\dfrac{d^2y}{dx^2} + x\dfrac{dy}{dx} + \left(x^2-\alpha^2 \right) y = 0,$ $\alpha \in \C.$ |
It gets even more complicated when we consider
Partial Differential Equations
For example, Laplace equation
$\dfrac{\partial^2u }{\partial x^2} + \dfrac{\partial^2u}{\partial y^2}+
\dfrac{\partial^2u }{\partial z^2}=0$
It gets even more complicated when we consider
Partial Differential Equations
|
Simulation by: Konstantin Makhmutov |
Chladni Figures: Source 1: Sophie Germain (1821). Recherches sur la théorie des surfaces élastiques Source 2: I. Todhunter (2014). Karl Pearson (ed.). A History of the Theory of Elasticity and of the Strength of Materials: Volume 1. Cambridge University Press. p. 153. Source 3: S. P. Timoshenko, (1953). History of Strength of Materials - With a Brief Account of the History of Theory of Elasticity and Theory of Structures Dover Publications, Inc. NY., Chapter V. |
It gets even more complicated when we consider
Partial Differential Equations
Another example: Navier-Stokes equations (imcompressible)
\( \ds\rho \left(\frac{\partial \v}{\partial t} + \v \cdot \nabla \v \right) = -\nabla p + \mu \nabla^2 \v + \F, \quad \nabla \cdot \v = 0. \)
Another example: Navier-Stokes equations (imcompressible)
\( \ds\rho \left(\frac{\partial \v}{\partial t} + \v \cdot \nabla \v \right) = -\nabla p + \mu \nabla^2 \v + \F, \quad \nabla \cdot \v = 0. \)
Fluid simulation by Amanda Ghassaei 🔄 (Reset/Re-start)
A first-order ODE is called separable if it can be written in the form
$\ds \dif{y}{x} = f(x)\,g(y).$
$\ds \dif{y}{t} = f(t)\,g(y),\;\;$ $\ds \dif{y}{\theta} = f(\theta)\,g(y),\;\;$ $\ds \dif{T}{t} = f(t)\,g(T).$
$\ds \dif{y}{x} = f(x)\,g(y).$
Example: Solve the ODE $\;\ds \dif{y}{x}=\frac{x}{y}$.
|
$\ds \frac{dy}{dx} = x\left(\frac{1}{y}\right)$
|
1. $\ds y \frac{dy}{dx} = x$ 2. $\ds \int y \frac{dy}{dx} ~dx= \int x ~dx$ $\;\Ra\ds \int y ~dy = \int x~dx $ $\quad\Ra\; \ds \frac{y^2}{2}= \frac{x^2}{2}+C \;$ $\Ra\; y^2 = x^2 + K $ 3. Extra step: $ \,y = \pm \sqrt{x^2+ K} $ 📝 |
If $\,\ds\dif{y}{x}=\frac{x}{y},\,$ then $\,y^2 = x^2 + K $ or $ \,y = \pm \sqrt{x^2+ K} $
The solution we found for the above example
contains an arbitrary constant. So this is
the general solution.
In the case of an Initial Value Problem (IVP)
this constant will be fixed
to find one, particular solution.
Example: Solve the IVP $\;\displaystyle{\dif{y}{x}=\frac{x}{y}},$ $\, y(0)=3.$
Example: Solve the IVP $\;\displaystyle{\dif{y}{x}=\frac{x}{y}},$ $\, y(0)=3.$
We know that $y^2 = x^2 + K$ is the general solution.
Consider the initial condition $y(0)=3.$
That is $\,3^2=0^2+ K$ $\Ra K = 9\,$ $\,\Ra y = \pm \sqrt{x^2+9}.$
Here we need to take the $+$ sign since $\,y(0)=3.$
Therefore $\,y = \sqrt{x^2+9}$ is the solution to the IVP.
Steps to solve separable ODEs: $\ds \,\dif{y}{x} = f(x)\,g(y).$
$\displaystyle \int\frac{1}{g(y)}\,\dif{y}{x}\, \dup x = \int f(x) \dup x\;$ $\iff$ $\displaystyle \int\frac{\dup y}{g(y)} = \int f(x) \dup x. $