Mathematical Visualisation using GeoGebra

Juan Carlos Ponce Campuzano

Linear regression: Residuals

👉 geogebra.org   

Code:

GTXF J8AA

🔗 geogebra.org

Let's get ready to explore maths in GeoGebra

GeoGebra calculator

1. Exploring systems of linear equations in 3D

Consider the system corresponding to three planes

\begin{array}{rcl} x+ 5y &=& 1+ 2z\\ x+z &=& 3y+3\\ 8y- \lambda &=& 3z \end{array}

\(\lambda\) is a parameter.

  1. Use Gaussian elimination to determine the value of \(\lambda\) for which this system has infinitely many solution.
  2. Use part a) to determine the infinitely many solutions. Express your answer in the form of a vector equation

1. Exploring systems of linear equations in 3D

\begin{array}{rcl} x+ 5y &=& 1+ 2z\\ x+z &=& 3y+3\\ 8y- \lambda &=& 3z \end{array}
\begin{array}{rrrrrrr} x&+& 5y &- &2z &=& 1\\ x&-&3y &+&z &=& 3\\ 0x &+& 8y&-& 3z &=& \lambda \end{array}
\left( \begin{array}{rrr|r} 1 & 5 & -2 & 1\\ 1 & -3 & 1 & 3\\ 0 & 8 & -3 & \lambda \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 5 & -2 & 1\\ 0 & -8 & 3 & 2\\ 0 & 8 & -3 & \lambda \end{array} \right)
R_2-R_1
\lambda = -2
R_1\\ R_2

the system is consistent with \(\infty\) solutions

1. Exploring systems of linear equations in 3D

lambda = Slider(-10, 10, 0.1)
eq1: x + 5y = 1 + 2z
eq2: x + z= 3y + 3
eq3: 8y - lambda = 3z

Solve({eq1, eq2, eq3})

line: X = (9/4, -1/4, 0) + t * (1/8, 3/8, 1)

🔗 Solve                      

🔗 Slider                      

2. Differential equations and slope fields

The slope fied for the differential equation \(\dfrac{dy}{dx}=\dfrac{-0.5(y-4)}{x},\) with \(x\neq 0,\) where \(-6\leq x\leq 6\) and \(-6\leq y \leq 6\) is shown below.

  1. Determine the value of the slope at point \(A\).
  2. Use the slope field to sketch the solution curve given \(x=-6,\) \(y=3.5\)

2. Differential equations and slope fields

n = Slider(10, 30, 1)
s = Slider(0.1, 1, 0.1)

F(x, y) = -0.5 * (y - 4)/x

SlopeField(F, n, s, -6, -6, 6, 6)

A = (0, 0)

SolveODE(F, x(A), y(A), 6, 0.01)

SolveODE(F, x(A), y(A), -6, 0.01) 

🔗 SlopeField

🔗 SolveODE 

3. Roots of complex numbers

Represent in the Argand diagram the solutions of

z^{1/n}
\text{with}\;k=0,1,\ldots, n-1
z^4= 16 \,\text{cis}\left(\dfrac{2\pi}{3}\right)
= 16 \cos\left(\dfrac{2\pi}{3}\right) + i\,16\sin\left(\dfrac{2\pi}{3}\right)
=\sqrt[n]{r}\left[\cos\left(\frac{\theta}{n}+\frac{2\pi k}{n}\right)+i\sin\left(\frac{\theta}{n}+\frac{2\pi k}{n}\right) \right]

3. Roots of complex numbers

Represent in the Argand diagram the solutions of

z^{1/n}
\text{with}\;k=0,1,\ldots, n-1
z^4= 16 \,\text{cis}\left(\dfrac{2\pi}{3}\right)
= 16 \cos\left(\dfrac{2\pi}{3}\right) + i\,16\sin\left(\dfrac{2\pi}{3}\right)
= r^{1/n} \exp\Bigg(i \left( \frac{\theta}{n}+\frac{2\pi k}{n} \right)\Bigg)

3. Roots of complex numbers

z_1 = i
u = Vector(z_1)
r = abs(z_1)
theta = arg(z_1)
n = Slider(1, 8, 1)

L = Sequence(r^(1/n)*exp(i * ( theta/n + 2pi * k / n )), k, 0, n-1)

Sequence(Vector(Element(L, k)), k, 1, Length(L))

# Alternatively
Zip(Vector(Point), Point, L)

🔗 Sequence      

🔗 Vector            

🔗 Zip (advance)

  • assign interactive and engaging tasks
  • view live updated progress of students
  • ask questions and see all student answers instantly
  • facilitate rich, interactive discussions

GeoGebra Classroom is a virtual platform through which teachers can

🔗 Global community

GeoGebra

Support / Help

If you want to go far, go together.

If you want to go fast, go alone.

🔗 Applied Mathematics, Statistics and Physics

School of Environment and Science

🔗 jcponce.com

Thank you!