\begin{array}{rrrrrrr} x & + & y & + & z & = & 4 \\ x & - & y & - & 2z & = & 1 \\ 2x & + & y & - & z & = & 2 \end{array}
\begin{array}{rrrrrrr} x & + & y & + & z & = & 4 \\ x & - & y & - & 2z & = & 1 \\ 2x & + & y & - & z & = & 2 \end{array}

Solving a system of linear equation

by elimination method

\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\begin{array}{rrrrrrr} x & + & y & + & z & = & 4 \\ x & - & y & - & 2z & = & 1 \\ 2x & + & y & - & z & = & 2 \end{array}
1
1
1
1
1
-1
-1
-2
2
1
2
4
1
2
4
1
1
1
1
1
1
1
2
2
-
-
-

Augmented matrix

\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 2 & 1 & -1 & 2 \end{array} \right)
R1 - R2
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 2 & 1 & -1 & 2 \end{array} \right)
R1 - R2
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 2 & 1 & -1 & 2 \end{array} \right)
R1 - R2
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 1 & 3 & 6 \end{array} \right)
2R1-R3
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 1 & 3 & 6 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 2 & 1 & -1 & 2 \end{array} \right)
R1 - R2
\left( \begin{array}{ccc|c} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 1 & 3 & 6 \end{array} \right)
2R1-R3
\left( \begin{array}{ccc|c} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 1 & 3 & 6 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 2 & 1 & -1 & 2 \end{array} \right)
R1 - R2
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 1 & 3 & 6 \end{array} \right)
2R1-R3
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & -3 & -9 \end{array} \right)
R2-2R3
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & -3 & -9 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & 1 \\ 2 & 1 & -1 & 2 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 2 & 1 & -1 & 2 \end{array} \right)
R1 - R2
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 1 & 3 & 6 \end{array} \right)
2R1-R3
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & -3 & -9 \end{array} \right)
R2-2R3
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & -3 & -9 \end{array} \right)
\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & -3 & -9 \end{array} \right)

Upper triangular matrix

\left( \begin{array}{rrr|r} 1 & 1 & 1 & 4 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & -3 & -9 \end{array} \right)
\begin{array}{ccccccc} x & + & y & + & z & = & 4 \\ & & 2y & + & 3z & = & 3 \\ & & & - & 3z & = & -9 \end{array}
  • Start from the last equation to find zzz.

  • Substitute zzz into the second equation to find yyy.

  • Substitute yyy and zzz into the first equation to find xxx.

Now we just use back-substitution:

\begin{array}{ccccccc} x & + & y & + & z & = & 4 \\ & & 2y & + & 3z & = & 3 \\ & & & - & 3z & = & -9 \end{array}
x = 4,\; y = -3,\; z = 3

Then

\begin{array}{rrrrrrr} x & + & y & + & z & = & 4 \\ x & - & y & - & 2z & = & 1 \\ 2x & + & y & - & z & = & 2 \end{array}

which is also solution for

x = 4,\; y = -3,\; z = 3
\begin{array}{rrrrrrr} x & + & y & + & z & = & 4 \\ x & - & y & - & 2z & = & 1 \\ 2x & + & y & - & z & = & 2 \end{array}

The solution of the system

is

\begin{array}{rrrrrrr} (4) & + & (-3) & + & (3) & = & 4 \\ (4) & - & (-3) & - & 2(3) & = & 1 \\ 2(4) & + & (-3) & - & (3) & = & 2 \end{array}

Checking the solution

Made by

Juan Carlos Ponce Campuzano

School of Environment and Science